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Abstract-Periodically layered bimaterial composites containing cracks parallel to the interfaces al
the mid-plane of a layer are considered. The analytical solutions of the plane elastostatic problems
under mode-I, mode-II and mixed-mode loading conditions are presented and equations for the
crack-tip micro mechanical fields are developed using principles of asymptotic homogeni2.ation and
the method of complex elastic potentials. An elastic stress singularity of the order r- II' is shown to
exist. The dominating stress intensity factors are found 10 match with the corresponding values for
the equivalent homogeneous orthotropic system. For all cases considered, the stres, intensity
factors dominating the micro stress field are also defined directly in terms of the stress functions.
Comparisons of the analytical results with numerical solutions obtained via refined finite element
analyses are presented. Numerical analyses have revealed that '[he stress field in the immediate
vicinity of the crack-tip corresponds to the universal isotropic field dominated by the: tip stress
intensity factor which depends on the homogenized material properties and those of the layer
containing the crack. The effects of micro structural heterogeneity and global anisotropy become
predominant beyond the small isotropic region wherein the micro mechanical field is very nicely
described by the analytical model. Crack location effects studies are also presented. Implications of
the above near-tip fields on delamination fracture in layered systems are discussed. <0 1997 Elsevier
Science Ltd.

1. INTRODUCTION

The problem of a traction free interface crack located between two bonded isotropic half
planes was first studied by several investigators in the early sixties (Erdogan, 1963 ; England,
1965; Erdogan, 1965; Rice and Sih, 1965). Those solutions exhibited an oscillatory singu
larity first observed by Williams (1959) and predicted the physically unrealistic phenomenon
of material interpenetration and wrinkling of the crack surfaces. Although the presence of
an oscillatory singularity in association with a non-physical complex stress intensity factor
initially hindered further developments in the area of bimaterial fracture, significant pro
gress has been made in recent years (Rice, 1988; Charalambides et al., 1989; Hutchinson
and Suo, 1992). A comprehensive overview on these developments are given by Rice (1988)
and Hutchinson and Suo (1992). As a logical continuation, the interfacial crack problem
between two dissimilar orthotropic half planes was investigated by several researchers
(Clements, 197 I ; Willis, 1971 ; Ting, 1986: Tewary et al., 1989; Qu and Bassani, 1989; Qu
and Bassani, 1993) wherein the oscillatory index was taken into consideration. Defining a
physically meaningful stress intensity factor remained a challenge until the late I980s when
Rice (1988) suggested the use of a scale insensitive stress intensity factor. Recently, Qu and
Bassani (1989,1993) developed the necessary and sufficient non-oscillatory conditions and
proposed the use of three separate conventional stress intensity factors representing the
three classical modes of fracture independently.

The most common approach to deal with the mechanics of heterogeneous media such
as wood, laminates, reinforced concrete and some other types of material systems is to
treat them as anisotropic homogeneous media and then apply the traditional methods of
continuum mechanics. The equations for the crack-tip fields in anisotropic continuum were
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derived by Sih et al. (1965) using the complex variable representation (Muskhelishvili,
1953) wherein an elastic stress singularity of the order r- 1

/
2 was shown to exist at the crack

tip. Since the actual micro mechanical heterogeneities are not modeled when using the
anisotropic continuum approach, the details of micro failure processes are masked and the
actual modes of damage can not be analyzed. For example, the out of plane kinking of a
delamination crack has been shown to depend critically on the local conditions at the main
crack-tip wherein the mechanics is highly influenced by the immediate material mismatch as
measured by the Dundurs parameters (Dundurs, 1969) as well as by the overall geometry of
the system, the applied loading, the composite micro structure and material non-linearities.
Considerable insight on phenomena such as delamination in layered systems and fiber
debonding in fiber reinforced composites has been gained by considering the near-tip
mechanics of cracks embedded close to or at the interface in a two layer system. Recent
studies (Charalambides, 1991; Zhang, 1994; Ballarini et aI., 1995; Jha et al., 1996: Jha
and Charalambides, 1996) help expand the family of near-tip solutions in the layered
systems by including the effects of the actual layered micro structure on the near-tip
mechanics. For example, Charalambides (1991) and later Charalambides et al. (1995)
developed analytical expressions for the delamination energy release rate made available
to the near-tip region associated with a delamination crack embedded in a pre-notched
fiber reinforced composite laminate. Those solutions included the effects of an arbitrary
combinations of an applied bending moment and applied force which were superimposed
on residual thermal and hygroscopic loading. While the above solutions included the salient
effects of material orthotropy, lamination and crack morphology as well as finite number
of layer effects on the delamination mechanics, they were developed for a specific geometry
and did not allow for the evaluation of the actual micro stresses that develop within the K
dominated region surrounding the crack-tip. As discussed by Shaw et al. (1993), the
knowledge of the actual micro stresses is critical in assessing near-tip non-linearities due to
plastic yielding within the ductile layers, brittle matrix damage, crack bridging and crack
renucleation and other micro failure phenomena that accompany fracture in layered
systems.

In an effort to further our understanding on the near-tip fields in layered systems,
Ballarini et al. (1995) conducted extensive numerical studies using a cut-out heterogeneous
layered near-tip zone wherein the elasticity solutions obtained by a remotely applied mode
I loading were obtained via the aid of finite elements. In those studies, Ballarini et al.
(1995) reported for the first time numerical evidence suggesting the existence of distinct K
dominated zones in the region surrounding the physical crack-tip and in the annular region
at radial distance greater than 2 to 3 fiber/matrix unit-cells. The results reported by Ballarini
et al. (1995) also suggested that the normal micro stress component in the direction parallel
to the interfaces may deviate substantially from the averaged unit-cell counterpart which is
predicted via homogenization arguments.

Jha et al. (1997) expanded the scope of the study by Ballarini et al. (1995) by developing
an approximate but rather accurate analytical model predicting the near-tip fields first
reported by Ballarini et al. (1995). Jha et al. (1997) also developed an analytical expression
relating the tip stress intensity factor to its applied orthotropic counterpart. An alternative
and more systematic formulation yielding the mode-I, mode-II and mixed-mode elastic
near-tip fields in layered systems containing a crack perpendicular to the interfaces has
been recently completed by Jha and Charalambides (1997). In these latter studies, which
also include numerical finite element comparisons, the near-tip fields for mode-I, mode-II
and mixed-mode were shown to exhibit similar zones of dominance as those first seen by
Ballarini et al. (1995). The mixed-mode studies conducted by Jha and Charalambides (1997)
suggest that either crack shielding or stress intensity amplification that is accompanied by
a simultaneous phase shift are induced by the heterogeneous layered micro structure. The
phase angle shift is measured as the difference between the mode-mixity dominating the
matrix region close to the crack-tip and the remotely applied mode-mixity. The Jha and
Charalambides fields are now being used to asses the evolution of small scale plasticity in
metal layers adjacent to the crack-tip in brittle/metal stratified composites containing cracks
perpendicular to the interfaces.
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In this work, a theoretical formulation is developed to describe the micro mechanical
crack-tip fields in periodically layered bimaterial systems containing a major crack which
is positioned in the middle of a layer and parallel to the interfaces. As in the studies reported
by Jha and Charalambides (1997), the effects of the periodic micro structure are introduced
in the solution through an asymptotic homogenization method (Bensoussan et aI., 1978;
Sanchez-Palencia, 1980; Christensen, 1991). As shown in these homogenization studies,
the higher order terms in the asymptotic expansion of the displacement field utilize the
successive gradients of the macroscopic strains as well as other tensor characteristics of the
micro structure. When retaining such higher order terms, the ensuing model incorporates
highly non-linear non-local effects induced by the heterogeneous micro structure. The
resulting macroscopic description of the problem is solved using the method of complex
elastic potentials (Lekhnitskii, 1963 ; Muskhelishvili, 1953). For problems involving lines of
discontinuities, the complex elastic potentials are sectionally holomorphic (Muskhelishvili,
1953) and their representation close to the crack-tip are available in the literature and will
be used in this work.

The structure of this paper is as follows. The basic formulation of the asymptotic
homogenization for the two dimensional plane strain problem is presented in Section 2.
The crack-tip micro stress fields for a crack parallel to the interfaces and running through
the mid-plane of a layer are also derived in Section 2. In addition to the analytical formu
lation, near-tip finite element studies were also performed within a heterogeneous cut-out
region surrounding the physical crack-tip which are presented in Section 3. Sample ana
lytical calculations and corresponding numerical results are presented in Section 4. Section
5 features numerical studies on the effects of crack location on the delamination mechanics.
The concluding remarks are presented in Section 6.

2. PROBLEM STATEMENT

Consider the wide thickness layered specimens shown in Fig. 1, of length 2C, height
2h and thickness w. As shown in the above figure, each of the specimens contains a
delamination crack of length a. In order to preserve material and geometric symmetry as
required for the case of pure mode-I and pure mode-II, the delamination crack plane will
be taken to coincide with the mid-plane of the mode-I and the mode-ll specimens shown
in Figs la and 1b, respectively. The layered geometry shown in Fig. lc however, as discussed
elsewhere (Zhang, 1994), is inherently subjected to near-tip mixed-mode conditions. Such
conditions may also arise for geometries and loading similar to those shown in Figs I a and
1b whenever they contain delamination cracks positioned away from the mid-plane of the
specimen.

A lamination micro structure comprising of alternating soft matrix and stiff fiber layers
will be considered. With the exception of the systems considered in Section 5 of this work
where the crack location effects are studied, and for reasons similar to those used by Jha et
al. (1997) and Jha and Charalambides (1997), the delamination crack will be placed in the
middle of a layer, but unlike the systems considered in previous work, in this study the
crack plane will be considered to be parallel to the interfaces.

2.1. Asymptotic homogenization and stress-strain relations
For each of the systems shown in Fig. 1, consider now a cut-out region containing the

crack-tip as shown in Fig. 2. For the purpose of this study, we shall consider that a sufficient
number of layers exists over the length R of the cut-out region such that outside this region
homogenization arguments can be applied. In the general case of mixed-mode loading, the
near-tip orthotropic displacements can be applied at the cut-out boundary provided that R
is sufficiently smaller compared to a macroscopic specimen dimension such as the height h.
Under these conditions, we shall seek the elasticity solution for the displacement, strain
and stress fields dominating the near tip cut-out region shown in Fig. 2.

Within the well established framework of asymptotic homogenization technique
(Bensoussan et al. (1978)), the micro-displacements for the periodically layered system in
the absence of the crack can be considered as a two space variable u(x,~) where ~ = X2/f. is
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Fig. 1. Schematic diagrams of periodically lay,~red bimakrial specimens with a major crack embed
ded parallel to the int,erfaces.

the fast scale variable and E = 1/R represents the ratio of the micro structural length I to
the characteristic macro length R and is assumed to be small. Thus, the displacements can
be expressed as an asymptotic expansion in terms of the homogenized displacement UO(x)
and the asymptotic parameter E such that:

(I)

where eJ(x) are the averaged strain components corresponding to the mean zero order
displacements UO(x). In the above expression, the strains are represented using the standard
contracted notation. The unknown functions Uj;(~) in eqn (I) are to be obtained by solving
the local equations of elastostatics with the indices taking on values i = I, 2 and j = I,
2 and 6. The above form of asymptotic displacement expansion and other aspects of
homogenization in periodically layered systems are presented in most detail in the paper
by Jha and Charalambides (1996). The zero order infinitesimal micro-strains after neglecting
higher order terms are given by:

U21.~

Ull,~

o
1+ U22.~

U12.~

(2)

where (,~) implies partial derivative with respect to the fast scale variable ~ = X2/E. Under
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Fig. 2. The near-tip plane strain boundary value problem used in the finite element studies.

plane strain conditions, the micro stresses at any point in the unit-cell are obtained using
the local constitutive relations such that the local stress-strain relations take the following
form:

(3)

where C;/O are the effective local stiffnesses given by:

e~ 1 = C I 1 + e 12 U2 l,~

e'12 = C l2 + e12 U22.~

C l6 = eI2Uc6.~

e;1= e12 +e22 U21.~

e;2 = en +Cn U22.~

e;6 = e22U26.~

e~l = e66Ul1,~

e~2 = C66FI2,~

e~6 = C66+C66UI6.~ (4)

and Ci] (i = j = 1,2,6) are the elastic moduli of the lamina at the point of interest.
Noting that the effective local elastic moduli e;/ are functions of ~ only and after

neglecting higher order terms, the local elastostatic equilibrium in the absence of body
forces yields:
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(5)

Since the above equations are to be satisfied for all values of t!, i = 1, 2, 6; the following
must hold within each unit-cell (see Fig. 3) :

a( aun )- C2 ? +C2 -, -- == 0
a~ - 'iJ~

(6)

Moreover, the continuity of the displacements and the traction should be maintained at
the matrix/fiber interfaces. Denoting the jump in the field quantities across the interfa.ce,
i.e. the difference between the values of a discontinuous quantity directly ahead of and
immediately behind the interface as [.], the displacement and the tractions continuity
respectively can be expressed as:

L

---.t---.!rincipal orthotropic
----,----- direction

Matrix

Fig. 3. The typical fiber/matrix unit-cell in the transformed space ( = x2/£.
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[Ui ] = 0 for displacement continuity

[O",jNJ = 0 for traction continuity
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(7)

(8)

where N i are the components of the unit normal to the matrix/fiber interface. The above
continuity conditions require, in turn, that the unknown functions Ui} must satisfy the
following conditions:

(9)

and

(10)

The solution to the local equilibrium eqn (6) subject to the continuity conditions (9) and
(10) yields the periodic functions Ui}(~)' As can be seen, tht:equilibrium eqns (6) are all of
the following type:

a[IX·a(U)/a~+p]/a~= 0 (11)

where IX and p represent material constants which are piece-wise smooth and I.-periodic on
the fast scale ~. The general solution of the above equation, satisfying the continuity
conditions (7)-(8) at the interfaces, is the continuous £'-periodic function U given by
[Boutin (1996)] :

(12)

where, by convention, for each piecewise continuous function qJ taking the constant values
qJm and qJf in the matrix and the fiber layer, respectively, the following notation has been
used:

(13)

with vfand Vm representing the fiber and matrix volume fractions, respectively. Also in eqn
(12), the shape functionf(~) is given by:

1
~ 1. h . I

_ I.
m

-:2 ill t e matnx ayer

fW - ~ 1
- - - - in the fiber layer

Lf 2

(14)

The profile off(O within the fiber/matrix unit-cell along the fast scale ~ is shown in Fig. 3.
Note that L = Lf +L m represents the unit-cell thickness on the fast scale ~ while the thickness
of the same unit-cell on the x-scale is taken to be I = 1m +,If as shown in Fig. 2. Thus, the
solution of the local equilibrium yields the following expressions for the unknown functions
Ui}:

U22 = f(~)' <C l2]) ~ 1D(Cl?l)

U21 = fW' <C l21)~lD(C2/)D(C12)/D(Cd

U I6 = f(~)' <C (6
1

) - ID(C661
)

(15)
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The effective local elastic moduli associated with the macroscopic strain if! can now be
obtained with the help of eqns (4) and (15) as:

C;2 = I/O/C22 )

C;l = <CdCZ2 )/<I/C22 )

(16)

The macroscopic elastic moduli are obtained by averaging the above moduli over the unit
cell volume. For the planar case we obtain the macroscopic elastic moduli as:

C?l = <Cll-C12CdC22)+<CI2/C22)2/<I/C22)

cg 2 = I/O/C22 )

C?2 = cg j = <CdC22 )/<I/C22 )

cg6 = I/O/C66 )

(17)

It is evident from eqns (16) and (17) that some of the effective local elastic coefficients are
equal to the respective overall elastic coefficients for the homogenized medium. Making use
of this resemblance, the micro stresses in the layered system can be expressed as:

[c CI2 (CO C )]-0 C I2 CO ,,()
(Jxx = 11 + c:Z 12 - 12 Bu + C

22
22 8yy

(18)

where Cij (i,j = 1,2,6) are the local stiffnesses and C~ (i,j = I, 2, 6) are the stiffnesses of
the homogenized medium. The double subscript notation for the stresses and the strains in
eqn (18) has been used merely for convenience and will be followed hereafter.

2.2. Crack-tip micro stress fields
We will seek here the approximate analytical solutions for the deformation and stress

fields in the near-tip region shown in Fig. 2 of a semi-infinite crack embedded parallel to
the interfaces in a layered system. As depicted in Fig. 2 the crack-plane is assumed to be
located in the mid-plane of the matrix layer, with no traction acting on the crack surfaces.
The zero-order homogenized displacements will be taken as the general expressions for the
plane deformation of the anisotropic continuum using the appropriate complex elastic
potentials (Lekhnitskii, 1963). With the aid of the strain displacement relations and eqn
(18), the equations for the micro stresses in the layered systems under consideration will be
then obtained in terms of the same complex elastic potentials. By choosing these potential
functions to be the holomorphic functions representing the crack-tip fields in the homo
geneous domain, the zero order mode-I and mode-II micro stress fields dominating the
crack-tip region of a crack embedded in a layered system (See Figs 1 and 2) will be derived.
The analysis shall be presented next in detail.
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For anisotropic materials, the generalized Hooke's law in contracted notation is given by:

(19)

where [Sul = [SjJ is the compliance matrix for the material. When the material has a plane
of elastic symmetry normal to the z-axis, the Hooke's law for the deformation in the (x, y)
plane (Lekhnitskii, 1963) reduces to:

for plane stress

for plane strain
(20)

It has been shown in Likhnitskii (1963) that the problems of plane anisotropic elasticity
can be conveniently formulated in terms of two analytic functions, ¢I (Zl) and ¢2(Z2) with
two complex variables Zl = X+ /l,y and Z2 = x + P2Y. The parameters /l, and P2 are the roots
of the characteristic equation:

(21)

The roots of eqn (21) are always complex and occur in conjugate pairs. In forming the
complex variables z/, /l\ and /l2 are chosen as those with positive imaginary parts. The
displacements for the homogeneous anisotropic continuum are given by:

u = 2 Re [PI ¢I (Z1) +P2¢2(Z2)]

v = 2Re[q,¢I(ZI)+q2¢2(Z2)]

where Re [.] signifies the real part of a complex number, and

Pi = b1,/l} +b12 -b'6/lj

qj = bI2Pj+bni/lj-b26·

(22)

(23)

The global solution of the anisotropic continuum obtained by the homogenization of the
layered system will be sought using the above method of complex elastic potentials. The
compliances of the homogenized domain will be taken as [S,J = [C~rl and the zero order
mean strain will be constructed from the symmetric gradients of the mean displacements
for the anisotropic continuum. Thus, using the expressions for the displacements given
above, the zero-order mean strains are obtained as:

t;x = 2Re[PI¢',(Z1)+P2¢;(Z2)]

tey = 2Re [ql/l'¢'l (ZI)+(Q2P2¢;(Z2)]

'ji~y = 2Re[(PI/lI +q,)¢'I(Zl)+(P2/l2+q2)¢;(Z2)]·

With the aid of eqns (18) and (24), the zero-order micro stresses take the form:

(Tn = 2Re[/lf¢'I(Zl)+/l~¢;(Z2)]

(Tyy = 2Re[¢'I(zl)+¢;(Z2)]

(Txy = -2Re[/11¢'1(Z,)+P2Q>;(Z2)]

where

(24)

(25)
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(26)

From eqns (26), it is evident that J1f and J1~ are functions of ~ = X2/£ and are discontinuous
at the fiber/matrix interfaces. As a result, the stress component (Jxx will also exhibit a
discontinuity at all interfaces while (JI'I' and (Ixy which do not depend on J1f and J1~ remain
continuous spatial functions. As discussed earlier, the functions ¢,(zd and ¢z(zz) will be
those functions associated with the elasticity solution for an anisotropic body containing a
macro-crack. For an infinite body containing a semi··infinite crack, the holomorphic stress
functions ¢1(Zl) and ¢zCzz) [Muskhelishvili (1953)] associated with the elastic asymptotic
solution near the crack-tip may be approximated by (Sih et al., 1965):

(27)

where ,110 and ,1zo are complex coefficients. Thus, in light of the above equations and the aid
of eqn (25), the near-tip micro stresses take the form:

= 2 R [ J1f
,1

l0 + J1~,1zo J(Jxx e
, v~os 8+ J1, sin 8) ,,/r( cos 8+ J1z sin 8)

[

)'10 ,1zo J(JI'y = 2 Re +
v~os 8+ ,u I sin 8) ,,/r( cos 8+ ,uz sin 8)

(Jxy = -2 Re l-~--,u~--+ ,uz,1zo J.
_..;;( cos 8 +,ul sin 8) J r( cos 8 +,uz sin 8)

(28)

Following the standard definition of the mode-I and mode-II stress intensity factors, K,
and Kn are given as:

(29)

(30)

The above equations when combined with the stress equations given by (28) yield the stress
intensity factors K, and Kn in terms of the complex constants Aw and ,1zo as follows:

(31)

(32)

By redefining ,110 and ,120 in terms of K, and Kn as:
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(33)

(34)

the micro stresses in the matrix and the fiber phases for Mode-I loading are given by the
following classical expressions:

Mode-I micro stresses:

The homogenized displacements of the system can be written as:

(37)

The respective Mode-II elastic fracture fields dominating the near-tip region of the layered
systems under consideration take the form :

Mode-II micro stresses:
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The homogenized mode-II displacements of the system can be written as:

In the above micro mechanical fields given by eqns (35)-(40), we find that, except for am

the expressions for all other stress and displacement components are exactly the same as
those given by Sih et al. (1965).

3. THE FINITE ELEMENT MODEL

The finite element solution of the full problem with detail micro structural heterogeneity
is computationally extremely intensive. To circumvent this problem, a small near-tip region
surrounding the physical crack-tip (See Figs 1 and 2) is considered for the finite element
modeling. The dimensions of the near-tip region are so chosen that the region under
consideration can be assumed to be fully confined inside the homogeneous orthotropic K
dominated asymptotic field such that the homogeneous orthotropic asymptotic dis
placements can be applied at the boundaries without introducing any appreciable error.
This clearly requires that the dimension R of the cut-out region is sufficiently larger than
the micro characteristic length I while being sufficiently smaller than a macro characteristic
length such as the uncracked ligament size, the crack length or the specimen height. The
near-tip boundary value problem is schematically shown in Fig. 2.

The near-tip solution domain comprises alternating layers of the matrix and the fiber
consistent with the lamination morphology used in the development of the analytical model.
The finite element representation of the domain is employed based on the eight-noded
quadrilateral isoparametric elements. A typical finite element mesh used in this study is
shown in Fig. 4 which is a representative of the mesh used for mixed-mode loading
conditions. As seen in Fig. 4, a highly refined focused mesh is used in the immediate vicinity
of the crack-tip which is surrounded by a rosette of singular quarter point elements in order
to capture the expected square root singular stresses. Due to the symmetry associated with
the mode-I loading, only the symmetric half of the mesh is considered for the mode-I
analysis. In addition, for this loading case, symmetry boundary conditions consistent with
mode-I loading, namely zero displacement in the y-direction and zero force in the x
direction, are imposed at all nodes in the crack-plane ahead of the crack-tip. While the
crack surfaces are considered to be traction free for both the mode-I and mode-II loading
cases, the homogeneous orthotropic asymptotic displacements are imposed on the remain
ing part of the boundary. The applied mixed-mode displacement field, which is characterized
by the remote orthotropic stress intensity factor KG = K? + iK?1 with the mode-mixity
'P = arctan (K?dK?) and modulus IKGI has the following form:
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Fig. 4. (a) A typical finite element mesh using in solving the near-tip boundary value problem.

(b) The focused near-tip mesh.
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(41 )

where rand fJ are the polar coordinates as shown in Fig. 2, bij are the compliances of the
homogeneous orthotropic medium, and U" UI " VI and VlI are the spatial complex eigen
functions obtained by solving the near-tip asymptotic problem for a homogeneous ortho
tropic medium. The subscripts I and II are used to denote mode-I and mode-II loading
conditions, respectively. The explicit forms of these functions can also be found in Sih et
al. (1965). The near-tip finite element solutions were obtained under plane strain conditions
using the in-house finite element software DENDRO and were verified using general
purpose finite element software ABAQUS.

4. RESULTS AND DISCUSSIONS

The results presented in this section are obtained for a bimaterial periodically layered
system comprised of the isotropic matrix and the isotropic fiber layers with the fiber volume
fraction v/= 0.5. The ratio of the fiber modulus to that of the matrix is taken as Et/Em = 10
while the Poisson's ratio for both phases is taken to be Vm = VI = 0.3. All computations
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were performed in a non-dimensional environment to maintain the generality of the results.
The spatial distances are normalized with the reference length R, the stresses are normalized
with the reference stress (Jo ,= IKol/J2nR while the displacements are normalized with
Uo = IKoIIEoJR/2n. Here, KO = K? +iKg represents the homogeneous orthotropic com
plex stress intensity factor and Eo is a reference elastic modulus which for this study is taken
to be the matrix modulus Em.

4.1. Crack-plane stresses
The mode-I normal stress (J,T and the mode-II shear stress (In acting on the crack

plane ahead of the crack-tip as predicted by finite elements analyses and the homogeneous
orthotropic model are presented in Figs 5 and 6, respectively. The results for two layered
systems, i.e., EtiEm = 10 and Ej/Em= 0.1, are reported in these figures. Since the reference
modulus, Em, corresponds to the layer containing the delamination crack, the moduli ratio
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EdEm = lOis associated with a system containing the delamination crack within a relatively
compliant layer whereas the opposite applies for the Ej / Em ,= 0.1 layered system. As dis
cussed earlier in this study, the stress components O' VI and O'n predicted by the analytical
model in the systems under consideration are exactly the same as those predicted by the
near-tip homogeneous orthotropic model. As such, the heavy solid lines in Figs 5 and 6
represent both the orthotropic predictions as well as the associated analytical solution. The
results are plotted on a log-log scale such that the slope of the stress profile indicates the
strength of the dominant singularity. It is to be noted that the stress field in the matrix
material occupying the immediate vicinity of the crack-tip (r/ R < 0.01) exhibits r- 11

behavior for both the pure mode-I and mode-II loadings. For a compliant matrix material,
the stresses in the immediate vicinity of the crack-tip are found to be smaller than the
homogeneous orthotropic prediction. As will be shown later on in this paper, the spatial
distribution of the stress field in this region is independent of the global anisotropy of the
system. However, the anisotropy of the system is shown to affect the stress distribution
away from the crack-tip which asymptotes to the homogem:ous orthotropic predictions in
the far-field region. As shown in both Figs 5 and 6, all micro stress profiles obtained via
finite elements exhibit a transitional regime which matches the isotropic near-tip predictions
to the orthotropic far-field results. As shown, the extent of the transition region is limited
within 0.01 ~ r! R ~ 0.1 which is approximately equal to the thickness of a unit-cell.

4.2. Stress intensity factors and energy release rates
As discussed above, the singular stress field in a very small region surrounding the

crack-tip is dominated by a local stress intensity factor, [(tiP. While the structure of the
asymptotic field in this region is governed by the matrix material, the dominating stress
intensities are affected by the bimaterial properties. In order to establish the effects of the
micro structure on the Ktlp, we shall evaluate next the near-tip stress intensity, Ktlp, using
J-integral considerations. For the linear elastic layered systems under consideration which
contain a crack parallel to the interfaces, the J-integral is path independent. As the J
integral physically represents the crack driving force or the energy release rate, '11, for linear
elastic systems, the net expenditure of mechanical energy illl the homogenized orthotropic
domain is made available with no changes to the crack-tip such that:

(42)

The above equation can now be used to relate the near-tip KllP and Kl\P stress intensity
components to their remotely applied orthotropic counterparts K? and K?, .. More specifi
cally, the orthotropic elastic energy release rate is given in terms of the material properties
and the associated orthotropic stress intensity factor as follows:

and

° ° 2b11 [~ 2b l2 +b66JO.5
~lfll = (K ll ) ----;= , /-b + -.-)b-- for mode-II.

'v/2 \J 11 ~ 11

(43)

(44)

At the same time, the stress intensity factor and energy release rate relation derived by
Irwin for isotropic crack systems also applies in the matrix region around the crack-tip
such that:
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(45)

and

(46)

When combining eqns (43) and (45) the mode-I tip intensity factor is found to be:

Ii o[ E"'.JMI22{~2:~ 2b ,2 +h66}0.5Jo.5K] P = K r -~-.:;- ~-- -- + ~-::-:-~~

I-v,;, 2 b II 2b 11

(47)

whereas by combing eqns (44) and (46) the mode-Ill tip component is found to be:

KlT = K?r[-f0,~ bl~{~b2_2 + ~2b_I_2_+_b_66}0 'JO 5
I-v- 2 hir 2b 11

"'"
(48)

When both Klip and Kl\P are acting simultaneously., the mixed-mode field at the crack-tip is
dominated by the tip stress intensity factor Ktip = Kjip+ iKit. Clearly, through eqns (47)
and (48) it is noticed that the relative amounts of mode-I and mode-II dominating the
crack-tip region may be different from their applied counterparts. This results in a phase
shift between the remotely applied and the induced tip mixed-mode loading. The tip mode
mixity, i.e. 'flip = arctan (KjTIKl1P), can be obtained with the aid ofeqns (47) and (48) as
follows:

(b )
0.25

. IItan 'fliP == - tan 'f
b22

(49)

where, as before, 'f = arctan (K?r/ K?) is the applied mode-mixity. It is important to note
that the effective tip phase angle depends only on the homogenized properties and remains
the same whether the crack lies in the compliant or in the stiffer material phase of a
bimateriallayered system.

The mode-I tip stress intensity factor predicted by eqn (47) is plotted as solid lines
against the bimaterial moduli ratio EtfE" for various fiber volume fractions in Fig. 7. The
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Fig. 7. Normalized tip stress intensity factor for mode-1 loading.
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discrete points in Fig. 7 represent the values obtained numerically using the stiffness
derivative method (Parks, 1974). The numerical results are shown to be in excellent agree
ment with those predicted via eqn (47). It is also observed in Fig. 7 that by increasing the
fiber volume fraction, Vj, higher shielding effects are produced for systems with Ell Em > 1.
On the other hand, as VI increases, stress intensity amplification is shown to take place in
systems with EdEm < 1. The effects of the bimaterial moduli ratio and the fiber volume
fraction on the mode-II tip stress intensity factor, Kiir, are presented in Fig. 8. The pre
dictions of eqn (48) are plotted as solid lines and the numerically obtained values are
overlaid as discrete points. Both results are found to be in excellent agreement. The crack
tip amplification and shielding exhibited in pure mode-II loading are found to exhibit trends
very similar to those exhibited under mode-I loading.

The phase shift ~\f = \fliP - \f obtained from eqn (49) for the mixed-mode loading is
plotted against the applied phase angle \f in Fig. 9 for different values of the parameter
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Fig. 9. The phase angle shift at the crack-tip versus remotely applied phase angle.
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b11 /b 22 which depends on the material combination and the fiber volume fraction. In order
to verify eqn (49), a number of near-tip boundary value problems with different mode
mixities were solved numerically and the phase shift was calculated using the energy
based technique of Matos et al. (1989). The material system chosen for this purpose had
Ell Em = 10 and 1:1 = 0.5 and Vi 0= Vm= 0.3 with the crack-tip located in the compliant phase.
The numerically calculated phase shift for this bimaterial system which corresponds to
b1l lb22 = 0.377 are overlaid in Fig. 9 as discrete points. The predictions of eqn (49) with
b l db22 = 0.377 for the above system are observed to be in good agreement with the cor
responding finite elements results. For the periodically layered bimaterial systems with
isotropic layers, the ratio b l db22 is always less than one and therefore in accordance with
the results shown in Fig. 9, the local phase angle \}IlIP is predicted to be less than the applied
phase angle \}I.

4.3. Mode-I micro stress angular profiles
The angular variations of the normalized micro-stress components CT.,,, an and an at

normalized radial distances rlR = 0.001 and 0.8 are presented in Fig. 10. Since the matrix
phase surrounding the physical crack-tip is isotropic, the stress profiles at rl R = 0.00 I are
accompanied with the isotropic singular solution. The stress intensity factor for the isotropic
field was obtained with the aid of eqn (47). It is seen from the left column in Fig. 10 that
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Fig. 10. Angular variation of micro stresses in plane strain mode-I loading. (a) In the matrix phase
surrounding the crack-tip at r = O.OOIR. (b) In the far-field region at r = 0.8R. The above results
correspond to Ed Em = 10. V, = V", = 0.3. fiber volume fraction VI = O.~-'illd dual length ratio

Ril = 10. The reference stress is taken as GO' = IKol!~2nR.
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the stresses in the immediate vicinity of the crack-tip are considerably lower compared to
the anisotropic continuum predictions and are in excellent agreement with the isotropic
field solutions which are dominated by the tip stress intensity factor KliP.

The angular variation of stresses in the far field region at radial distances r/R = 0.8 is
shown in the right column of Fig. 10. It is seen that the stress components O"yy and O"xy are
continuous owing to the continuity requirements ofthe traction at the fiber/matrix interfaces
and they are in excellent agreement with their anisotropic continuum counterparts. The
heterogeneous micro structure induced discontinuity is reflected in 0" rx which oscillates
about the anisotropic continuum prediction. This oscillation of O"n is captured by the eigen
functions which are given in eqns (35) and (36). For all stress components, the predictions
of the analytical model are found to be in a remarkable agreement with the numerical
solutions obtained via the method of finite elements. The stresses in the far-field region are
dominated by the remotely applied stress intensity factor.

4.4. Mode-II micro stress angular profiles
In Fig. 11, the angular variations of the normalized stress components are presented

for the pure mode-ll loading. As before, the results are reported for r = 0.001 Rand
r = 0.8R. The isotropic analytical predictions presented in the left column of Fig. II were
obtained using the tip stress intensity factor, Klt, which is given by eqn (481. It is observed
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Fig. II. Angular variation of micro stresses in plane strain mode-II loading. (a) In the matrix phase
surrounding the crack-tip at r = O.OOIR. (b) In the far-field region at r = 0.8R. The above results
correspond to E,!Em = 10. 1'/ = I'm = 0.3, fiber volume fraction 1'/ = O.i-Jlld dual length ratio

R!! = 10. The reference stress is taken as (J" = IKol/y!2nR.
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that the numerically predicted stress field in the immediate vicinity of the crack-tip exhibits
universal isotropic behavior. The far-field stresses under mode-II loading are shown in the
right column of Fig. II. The analytical and numerical predictions for both stress component
U xx and uxy are found to overlap each other to such an extent that the analytical and
numerical results can not be dis.tinguished easily. As expected, the micro-stress Un oscillates
about the homogeneous orthotropic prediction. The agreement between the analytical and
numerical predictions of Un is found to be relatively better in the softer matrix layers
compared to that in the stiffer fiber layers.

4.5. Mixed-mode micro stress angular profiles
The angular variation of the normalized micro stresses for the mixed-mode loading is

shown in Fig. 12. The mode-mixity angle, qJ = arctan (K?dKn, for the applied loading has
been taken to be 45) which implies equal amount of applied mode-I and mode-II loading.
As before, the variations of the micro stresses are presented for the immediate crack-tip
neighborhood at a radial distance of rj R = 0.001 and for the far-field region at a radial
distance of r/ R = 0.8. The local tip stress intensity factors Kl'P and Kl\P dominating the
matrix material surrounding the crack-tip were taken to be those predicted by eqns (47)
and (48). The isotropic field shown in the left column of Fig. 12 represented by a continuous
thin line is that dominated by the effective tip stress intensity factor Klip = Kl'P + iKlr. It is
interesting to note that the stresses in the immediate vicinity of the crack-tip do exhibit an
isotropic field behavior but in accordance with eqn (49) the phase angle dominating the
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Fig. 12. Angular variation of micro streSSt:s in plane strain mixed-mode loading with '¥ = 45'.
(a) In the matrix phase surrounding the crack-tip at r = O.OOIR. (b) In the far-field region at
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matrix region surrounding the crack-tip, 'Pllp = arctan (K;\P/Kit), is different from the
phase angle 'P of the applied loading. This happens due to the effects of global anisotropy
of the system which changes scaling factors for the two modes of the applied loading.

The angular variation of the stress in the far-field region at radial distances r/R = 0.8
under mixed-mode loading is shown in the right column of Fig. 12. It is seen that the
discontinuous micro stress axx oscillates about the mean stress represented by the thick
solid line. For all stress components, the predictions of the analytical model are found to
be in a remarkable agreement with the numerical solutions obtained via the method of
finite elements. As expected, the stresses in the far-field region are found to be dominated
by the remotely applied stress intensities.

4.6. Contour plots
The mode-I contour plots in the region close to the crack-tip which were obtained

numerically via the method of finite elements as well as those obtained analytically are
shown in Fig. 13. The contour levels are indicated in the figure by means of a side color
bar attached with each plot. For comparison purposes, the numerical stress contour plots
are reported on the left under column (a) whereas their analytical counterparts are reported
on the right under column (b). Similar contour levels were selected for both the numerical
and analytical results. We clearly notice that the stress component a xx is discontinuous
while ayy and axy are continuous throughout the region. The analytically predicted contour
plots are found to be smooth compared to those predicted numerically. The non-smoothness
of the numerically predicted contours is believed to be partly due to the nonlocal effects
which are not accounted by the approximate analytical model and partly due to the mesh
discretization used in the analysis. As mentioned earlier, the current analytical model can
be extended to predict more realistic stress field by including some higher order terms.
Nevertheless, all important features of the stress field are nicely captured by the current
analytical model.

The contours of the micro stresses obtained numerically and analytically in the near
tip detailed region for pure mode-II loading are shown in Fig. 14. The contour levels are
adjusted to values that best reveal the important features of the stress field. As expected,
ayy and a xy are found to be continuous throughout the region while an is shown to
be discontinuous at all matrix/fiber interfaces. For pure mode-II loading, the analytical
predictions are found to be very close to the numerical pre:dictions. The stress components
(J'Y is observed to attain a maximum value while as expected, a xx and a yy vanish on the
crack plane ahead of the crack-tip. The normal stresses are shown to dominate the area
below the crack-tip consistent with the mode-II fields in homogeneous systems.

Figure 15 shows the contours of the normalized micro stresses on the deformed
geometry for mixed-mode loading in a detailed region surrounding the crack-tip. As shown
in the above figure, the applied mode-mixity phase angle for these contours is 45 c

• An
excellent agreement between the numerical and analytical contours is observed. As expected,
the stress components a yy and (Txy are continuous throughout the near-tip heterogeneous
region. The light grey region surrounding the crack-tip in the (T.n contour plots is rather
revealing on the shape of potential crack renucleation zone in layered systems.

4.7. Interfacial stresses
The normal and shear stresses acting on the interfaces closest to the crack plane directly

above and below the crack tip are shown in Fig. 16. The mode-I predictions are reflected
in the top row of plots, the mode-II results are shown in the middle row whereas the mixed
mode results are those in the bottom row of plots of Fig. 16. As before, the stresses are
normalized with the reference stress a o • The data points shown in Fig. 16 represent the finite
element predictions whereas the solid lines represent the predictions of the approximate
analytical model. These results were obtained for the same bimateriallayered system used
to obtain the results earlier in this work. As such, the interfacial finite element stresses
reported in Fig. 16 represent transient regime results and are thus, not expected to be in
agreement with the analytical model prediction. As shown in Fig. 16 however, the analytical
and finite element results are found to be in a remarkably good agreement for the mode-I
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loading case whereas the results are in lesser agreement for the mode-II and therefore the
mixed-mode loading cases. The mixed-mode results shown in the third column of plots
include the interface stresses acting at both the top and the bottom interfaces. The model
I and II stresses were plotted only for the upper interface since the stresses acting on the
lower one can be extracted from the reported results using symmetry arguments.

In addition to enabling further comparison between the analytical and numerical
predictions, the results reported in Fig. 16 may also offer useful insights on the potential
for crack renucleation and interface delamination under ideally brittle conditions for the
systems and loading considered herein. It is clearly shown in Fig. 16 that the interfacial
stresses of relatively high magnitude compared to the reference stress may dominate the
interface region directly above and below the crack-tip. This high interface stress zone is
shown to be limited within the interval - 0.1 ~ xj I." ~ 2 which represents approximately
the length of one fiber/matrix unit-cell.

5. CRACK LOCAnON EFFECTS

As discussed earlier, the approximate analytical model presented in this work yields a
rather accurate description of the stress fields in an area bounded on the outside by the
boundary of the near-tip cut-out region used in this study and in the inside by a radial
distance from the crack tip which was shown to be of the order of one to two unit-cell
lengths. In separate studies (see Jha et al., 1997), it is shown that the elastic singular fields
dominating the above annular area remain rather unaffected by the location of the crack
relative to its adjacent parallel interfaces. On the contrary, in those studies it is shown that
the fields dominating the near-tip region surrounding the physical crack tip remain sensitive
to the location of the crack within the layer and its relative distance from the adjacent
interfaces.

In order to demonstrate some of the above findings, in this section, we conduct
numerical finite element studies as needed to assess the effects on the near-tip mechanics of
the location of the major crack relative to its adjacent interfaces. The boundary value
problem for this study is set up using the same heterogeneous cut-out near-tip area shown
in Fig. 2. However, in deriving the results for this part of the study, instead of considering
the crack to be located in the middle of the layer, the crack was placed at several discrete
distances t/lm from its adjacent bottom interface. As such, the homogeneous orthotropic
displacement fields imposed along the boundary of the cut-out domain were evaluated with
respect to the off-set location of the crack-tip. The values for t/lm considered for this part
of the study were in the interval 0.1 ~ t/lm ~ 0.9.

The exact crack location for each of the nine cases considered can be extracted from
the finite element data points shown in every plot in Fig. 17. Values for tllm outside the
above interval were not considered, since other bimaterial effects due to layer proximity
become more important and thus may influence the near-tip mechanics for cracks located
adjacent to either the top or the bottom interface. For example, when tjlm = 0 the n,ear tip
solution should be that obtained for an interface crack bounded by the matrix material on
the top and the fiber material at the bottom. On the other hand, when tjlm = 1.0, then the
near tip solution should be that obtained for an interface crack bounded by the matrix
material on the bottom and the fiber material at the top. The latter solutions are presented
and compared to the finite element results obtained using the approach described in this
section in the paper by Jha et al. (1997). Thus, in this section, we limit our interest to those
solutions that exhibit in a clear way the isotropic characteristics for the matrix near-tip
asymptotic elastic fields. For the sake of clarity of the results, a new tip stress intensity
factor, KIP = ~ip + i~T =, \KIP\. \fItip will be used in association with the isotropic matrix
tip fields dominating the near-tip region of the offset crack-tip.

The normalized ~IP and Kif components of the local offset tip stress intensity factor
as a function of the normalized distance tllm from the bottom interface are presented in
Fig. 17. The above figure includes the results for three loading cases. More specifically, the
plots in the top row correspond to a remotely applied pure mode-I loading. The plots in
the middle row of Fig. 17 were obtained for an applied pure mode II loading whereas those
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(a) (b)
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Fig. 13. Stress contours in a detailed region around the crack-tip under mode-I loading. Column
(a): Finite elements predictions. Column (b): Approximate analytical model.
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Fig. 14. Stress contours in a detailed region around the crack-tip under mode-llioading. Column
(a): Finite elements predictions. Column (b): Approximate analytical model.
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Fig. 15. Stress contours in a detailed region around the crack-tip under mixed-mode loading
with remotely applied phase angle 'P = 45 Column (a): Finite elements predictions. Column

(b): Approximate analytical model.
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in the third row were obtained for an applied mixed mode loading corresponding to equal
amounts of mode-I and II loading, i.e., tp = 45 degrees. For each loading case, the plots in
the left column represent the normalized mode-I component of the offset crack-tip stress
intensity factor ~ip, whereas the right column represents the associated mode-II component
for the loading cases considered.

Thus, the normalized ~ip and ~r components of the local offset crack-tip stress
intensity factor obtained under an applied pure mode-I loading plotted against the nor
malized distance tllm from the bottom interface are shown in the top row of plots in Fig.
17. As before, these local tip mixed mode ree.1lts were extracted from the associated finite
element solutions using the energy method developed by Matos et at. (1989). Based on
these results, two major observations can be made.

The first observation is that under an apparentlapplied mode I loading, a very small
matrix region around the offset crack-tip which is within the layer containing the crack
may be dominated by slightly mixed-mode conditions. Local pure mode-I conditions are
shown to be obtained only for systems wherein the crack is placed in the middle of the
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Fig. 17. Variation of the tip stress intensity factors with the crack location relative to the adjacent
interfaces. The results in the top row of plots correspond to an applied mode-! loading, those in the
middle row to pure mode-II and the bottom row results were obtained for an applied mixed-mode

loading.

matrix layer as assumed by the approximate analytical model. For cracks however located
at distances closer to either of the two adjacent interfaces, the results presented in the top
row in Fig. 17 suggest that the opening or mode-l tip component of the stress intensity
factor reduces slightly while a non-zero mode-II component develops. The presence of a
non-zero mode II predicted for cracks located away from the middle of the matrix layer, is
also shown in Fig. l8b in terms of a non-zero mode mixity. This figure suggest that over
the range of normalized distances from the bottom interface considered, a maximum phase
angle shift of about 8 degrees is predicted for the two extreme cases considered. over the
same range, it is also shown in Fig. l8a that the associated elastic energy release rate
remains constant and as such it does not depend on the relative location of the crack within
the layer.

The second major observation that can be made using the results shown in Figs 17
and 18, is that the near-tip region dominated by j{"P experiences the same mode mixity as
the applied one only for cracks located in the middle of the layer and subjected to either
pure mode-lor pure mode-II loading. For example, in the latter cases, local pure mode-I
conditions are obtained when an overall pure mode-l loading is applied whereas local pure
mode-II conditions are pre:dicted when a remote pure mode-II loading is applied. It is
interesting however to notice that under the above conditions, the micro structure appears
to effectively reduce the dominant local stress intensities. For example, for cracks placed in
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Fig. 18. (a) The normalized elastic energy release rate in the matrix phase surrounding the offset
crack-tip under remotely applied mode-I, mode-II and mixed-mode loading. (b) The phase shift of

the offset crack with respect to the phase angle of the mid-plane crack.

the middle of the layer and under pure mode I applied loading the effective tip stress
intensity factor is predicted to be Ktp = Kt p ,= O.7K? and under pure mode-II applied
loading of the corresponding mode-II component of the local stress intensity factor is
predicted to be only Kn p

= Kn p
= O.54K?I' This type of effective shielding of the local tip

fields from the applied loads is clearly influenced by the layer micro structure and bimaterial
properties as discussed earlier in this work.

The local tip stress intensities associated with a remote pure mode-II loading are shown
in the second row of plots in Fig. 17. Under these conditions, KJ~P appears to behave in a
similar manner as the KJip did under the influence of pure mode-I applied loading which
was discussed above. This type of reciprocal behavior appears to also apply for the KJlP
induced by a remote pure mode-II loading and the negative of KJt induced by a remote
pure mode-I loading.

In Fig. 18a, the energy release rate made available to the local offset crack tip is plotted
against the normalized distance fjlm of the crack plane from the bottom interface. It is of
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interest to observe that for all three loading cases considered, the <§,ip remains constant and
independent of the crack location within the layer. This can be explained by considering
the path independence of the i-integral along side with the argument of imposing for the
cracked systems of infinite dimensions under consideration the same applied elastic energy
release rate through the use of the same orthotropic near-tip displacement fields.

In Fig. 18b, the difference of the mode mixity dominating the local crack tip region
i.e., 'F'ip, to the mode mixity dominating the same region of a crack placed in the middle of
the layer i.e., '¥tJp

, is plotted against the normalized distance tjlm' As expected, the above
phase shift becomes zero for Ijlm = 0.5 and takes on a maximum value of about 8 degrees
for the extreme cases considered of tjlm = 0.1 and tjlm = 0.9. It is worth noticing that similar
predictions are obtained for all three loading cases considered. As mentioned earlier in this
section, a more thorough presentation on the crack location effects for the systems con
sidered in this study as well as for layered systems with cracks placed perpendicular to the
interfaces is included in a forthcoming article.

6. CONCLUDING REMARKS

The mode-I, mode-II and mixed mode asymptotic near-tip fields associated with cracks
placed parallel to the interfaces of a layered bimaterial system have been developed both
analytically using asymptotic homogenization and numerically using the method of finite
elements. Two distinct regions of K-dominance have been observed. The matrix region
surrounding the crack-tip of the crack embedded in the middle of the layer was shown to
be dominated by a local tip stress intensity factor K,ip = Kl'P + iKnp

. At the same time, the
stress fields dominating material points at radial distances greater than approximately one
or two fiberjmatrix unit-cell lengths were shown to be expressed in terms of the applied
orthotropic stress intensity factor KO = K? -+- iK?I' In this annular domain, the continuous
stress components were predicted with sufficient accuracy using the orthotropic spatial
eigenfunctions. However, the discontinuous normal stress component which is parallel to
the interfaces was shown to deviate substantially from its orthotropic counterpart and it
was nicely captured by the analytical approximate model. The analytical results were shown
to be in good agreement with those obtained via the method of finite elements. Observed
micro-stress deviations were attributed to layer proximity and higher order strain gradient
effects which are not accounted by the approximate analytical model.

The relations between the local K'IP and the remotely applied KO have been established.
Consistent with the path independence of the i-integral, it has been shown that for the class
of system considered in this study, the linear elastic energy release rate made available to
the crack tip is equal to its applied orthotropic counterpart. At the same time, it was shown
that an appreciable shift in the tip phase angle compared to the applied one was induced
as a result of the layered micro structure. An additional phase shift was also observed in
systems containing cracks away from the middle of the layer.

In light of the above findings, it is concluded that the analytical model developed herein
provides an excellent tool for the description of the micro mechanical fields dominating the
near-tip region of layered systems that belong in the general family of layered composites
considered in this study. As such, the results presented herein can be used to predict l:he
onset of delamination fractures in stratified composites and the evolution of other small
scale non-linear phenomena such as plasticity in metal layers and microcracking that may
develop in the brittle layers within the near-tip region during delamination fracture.
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